Depariment of AERONAUTICS and ASTRONAUTICS

STANFORD UNIVERSITY

S. C. McIntosh, Jr.

(NASA-CR~14(896) THEGRETICAL CONSIDERATIGNS

N75-14715
Q? SCHE NCKNLINEAR ASPECTS OF HYPERSONIC
FANEL FLUTTER Final Report, 1 Sep. 1965 -
31 .Aug. 1970 (Stanford Univ.) 72 p HC $4.25 Unclas

CSCL 01B §3/02 06651

Theoretical Considerations of Some

Nonlinear Aspects of Hypersonic Panel

Flutter

Final Report SUDAAR
NASA Grant NGR 05-020-102 No. 491
{1 September 1965 to 31 August 1970)




TABLE OF CONTENTS
LIST OF ILLUSTRATIONS . . . . . .. .. .............Iii
NOMENCLATURE . . . . . . . it ittty

Chapter ' : Page
I INTRODUCTION . . . . . .. ... u v ... . 1

I EQUATIONSOFMOTION 3

I VERIFICATION PRELIMINARY ASSESSMENT OF. AERO—
DYNAMIC NONLINEARITIES . . . . ... ... ....... 15
3.1 Comparison with Previous Results . . . . .. ... .. 15
3. ZuBehaviorwith Zero System Damping . . . . .. .. .. . 15

IV EFFECT OF AERODYNAMIC NONLINEARITES ON POST—
CRITICAL RESPONSE . S -

Vv EFFECT OF AERODYNAMIC NONLINEARITIES ON STABILITY . 22

5. Comparlson with Experiment . . . . - e e .. 22
5, 2 Constant-hitial-Energy Stablhty Boundary S L
5.3 -Parametric Survey . . . . . e e s 4 e e s e e .. . 25
VI A NEW METHOD OF ANALYSIS.. . . . . v . v o0 o v . <. . 27
6.1 - Kamel's Perturbation Method . . . . . . . . . . ... . 27
62.Example—TwoModes..........,.‘...‘.'..30
VI CONCLUDING REMARKS . . . . . .............40
REFERENCES . . . . . . .0 o v v v i e i s a2

FIGURES . . . . . . . .t vttt it e e o s e 4

ii



Figure

10

LIST OF ILLUSTRATIONS

N‘o-dimensioml panel (plate-eolumn) on hinged supports .

Dlmensmnless panel displacement at x =0, 75a vs, dimensmnless

time T; A =400, ;I=0.01, @=10, N=6, a (0)=0.1, linear

aerodynamwterms T T T T U
Continuation, response of panel of Fig. 2

Dirﬁensionless panel displacement at x = 0, 75a vs. dimension-
less time 7 for zero system damping; A =400, Eﬁ =00,
o= '1'.7'0, N =8, 'al(O) =0, 1, linear aerodynamic terms

Continuation, response of panel of Fig, 4 .
Dim_en_éionless panel displacement at x = 0. 752 vs. dimension-

less time 7 for zero system damping; A = 400, 1;—4 0.0,

a=1.0, N=6, al(O) = -az'(O) = 0. 01, linear aercdynamic terms .

Dimeh_sionless panel displacement at x = 0, 75a vs." dimension-
less time 7 for zero system damping; A = 346. 1,‘_%4' =0,0,
a=1.0, N=2, a,(0) =-a,(0) = -a,(0) = 0.363, linear aero-

dynamic terms .

Dimee_sionless panel displacement at x = 0. 75a vas. dimension-
1e's_s time 7 for zero system damping and subcrifice,l Az

A = 330, 9——00 @=1.0, N=6, a,(0) =-a, (0)-01 linear

'aerodynamicterms e e e e e e e e e e e

Response of panel of Fig. 8 with different m1tia1 condihons —
3(0) 2(0)—05....‘

Dimensmnless panel displacement at x = 0, 75a ve. ,difrleneion-
less time 7; A =330, -‘-“—= 0.01, @=0.0, N =8, laﬂl=o 05,

a, (0) = -az(O) 1. 71, lmear aerodynamic terms plus term
proportmnal to (Sw/ax) from (F )k .

iii

Page
, 44

. 45

. 46

4T

48

49

50

51

. 52

. 53



Figure - page
11 Response of panel of Fig. 10 with slightly greater mihal
conditmns —— a0 =-a,0=1.72 .. ... .. e e . .. .54

i2 Maxiz_num abgolute value of dimensionless panel displacement
w '.atrz‘ X/a = 0,75 versus dimensionless dynamic pressure A3
N =6, R =0, a=1, y/M=0.01, sp=0, Mb/a=0,05,
Nonhnear aerodynamic loadmg made up of piston- theory terms

proporhonal to (Bw/ax) and (Bw/aw)(aw/at) C e P - 1

13 Mammum absolute value of dimensionless panel dispiacement
w at x/a =0, 75 versus in-plane restraint parameters and curve

legeﬁd.sameasinFig. O -

14 Dirnens_ionless stress o at gz = +h/ 2 versus chnrd dli‘stance'
x/a for o =0.1, A =550, and other parameters as listed
for Fig. 12, Stress distributions correSpond to peak d1sp1ace-
'ments plotted in Fig., 13, with that due to nonlinear aerodynamlc
lnadmg calculated for negative (into-cavity) peak B -

15 Linear stability boundary for a panel (plate-column) on hinged
'Suppnrts Ordinate is dimensionless dynamic pressure,
absclssa is dimensionless in-plane applied load (negative when

panel is compresgion), (AfterRef, 11) . , ., ., ., . .. . . . . .58

16 Du:nensionless panel displacement w at x/a =0, 75 versus
dlmensmnless time 7, for point A in Fig, 15 after R
m_creased from point BN =6, A =260, a=0.1, y/M = 0. 01,
AD = 0, Mh/a = 0, 05, nonlinear aerodynamic loading': g’iven by
|pi'si6n'—t.:heory terms proportional to (3?/82(}2 and (&?/8::)(8?/&) . .59

17 Vanation of 1n1!:1a1 values a 1(0) =-a (0) with dimens:onless

m—plane applied load R for «=0.1, E0=1750 e 0 e . .. .80

iv



Figuré j o ' ' ‘ Page
18 . COmparison of linear and nonlinear stability bounda'rie‘s.'
N = G,p/M 0.01, Mh/a =0.05, a=0.1, Ap =0, E0~1750
with a, (0] = -az(O) #0, nonlinear aerodynamic terms

proportmnal to (Bw/ax) and (BW/OX)OW/) . . . s 4 . e . . . . 61

19 Val_:latlon of critical value of A with initial energy and modal

cdhtént‘for Rx = 0; other parameters same as in Fig. .18 . . . . . 62

20 Variation of critical value of A with dimensionless static
pr_és,s;ii'e difference for fixed initial conditions, R)'{ =0;

other parameters same asin Fig. 18 , . . . . .. .. ... . . 63

21  Variation of critical value of A with nonlinear int,e'rac-tion

‘ paré_m'eter for E0 = 1750, other parameters same ag ianig.. 18 ., , 63



o |

NOMENCLATURE

Panel éhord

Modal amplitude for panel transverse diSPIacement

N _ ,
wix,t) = E Zk(t) sin E:l
k=1 ‘

Dimensionless modal amplitude, Eﬁ/h

tof~

Scaled modal amplitude, () a

Vector of initial modal amplitudes and veloéities,

Modal amplitudes for in-plane displacement

Dependent variable obtained by applylng variat1on of
parameters to governing panel equatlons

Variable Cy

perturbation method

3 trénsformedlaccordihg to Kamélfs

Initial magnitude of EL

.- . Sl £ -
Combinatorial cogff1c1ent, E?(EJETT
Cubic terms in panel governing equations’

Plate modulus, Eh5/12(1 -vE)

- Complex constant defined in Eq. (6.27), D,_ + iD

e V- b

. . . .6 . +
Complex constant defined in Eq. (6 2.), _DER + 4D,

Real constant, D1R D



4?2

Modulus of elasticity
Panel total energy

h ; =3,.2 .
Dimensionless panel energy, Ea”/Dh o
Perturbation coefficient vectors — see Eﬁs. (€.5)
fth component of f;
In-plane generalized force
Transverse generalized force
Perturbation coefficient vectors — see Egs. (6.1)
fth component of g*k)
Panel thickness
X
(-1)%
Running spring constant, panel in—planefreétraint spring

Free-stream Mach number

Number of modes used to approximate panel't;ansverse

deflection
Pressure
Free-stream pressure

Static pressure difference across panel; positive if

cavity pressure exceeds free-stream pressure
Dimensionless static pressure difference, Z;hh/Dh

: 1
Scaled static pressure difference, (&) 4p



q " Free-stream dynamic pressure, pUE/E

Ql’ Q2 _,i ' Quadratic terms in panel governing eq@ations
ﬁ; - . Applied in-pléne load
SR . = oy
Rx - Dimensionless in-plane load, Rxa /D .
Eé L Time-vérying applied in-plane load
L = 2

Ry . Dimensionless in-plane load, R,a /D
'ﬁo ‘ - Scaled in-plane load, (1 -Q) R,
t . Time
u 7 -: Panel in-plane displacement
u ‘, . Free-stream speed
ﬁ; ' _ Linear-system eigenﬁector at A = lc

.. Ith
Uk,z [ , component of ﬁ;
W ; 'hH Panel transverse displacement
w . Dimensionless displacement, w/h
ﬁi -l Trans formation vectors'defined in Eqs. (6.3)-

. 1th

Wk,z o component of WL
X " Ppanel in-plane coordinate
z - Panel transverse coordinate
o . In-plane restraint parameter, K[K + Eh/a(l -\)2)]'"l
¥ . ” 7 Ratio of specific heats, ¥ = 1.4
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. : L
Dimensionless time, t(D/pha’)

 Small parameter

Perturbatioﬁ parameter, (i -lc)/l ' '.:'
Perturbation parameter, Rx/ﬂ? - €1(1l+ij/ﬂ2)
Phase angle

Initial phasé angie, 91(0)

Dyﬁamic-pressure parameter, 2qa5/Mﬁ  
Critical value of X determined f?og_iinear theéry .
Ma#s ratio, pa/pmh
Poisson's ratio
Free-stream mass density
Panel mass density

Eigenvalues of linear system at X ﬁflc

[N

1
Scaled time, (\)271

Derivative of dimensional quantity with respect to
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I. INTRODUCTION

This report constitutes a final report on research into the effects
of hypersonic nonlinear aerodynamic loading on panel flutter, supported
" by the National Aeronautics and Space Administration.under Grant. NGR 05-
020~102, from September 1, 1965 to August 31, 1970. The technical moni-
tor of this grant was Mr. Peter A. Gaspers, of the Nonsteady Phenomena
Branch at Ames Research Center, whose support an& counsel are gratefully
acknowledged, ‘ '

The initial motivation for this investigation was provided by the
results of some high-Mach-number panel- flutter experiments descrlbed in
Ref, 1. In these experiments, in-plane tension was used to stabilize a
panel untill;teady~state tunnel conditions were reached. The tension was
reduced until flutter occurred and then increased until flutter ceased.
It was noticed that the tension at which flutter ceaséd was in many cases
consistently higher than that for which flutter occurred initially, so
that there'wés an effect analogous to hysteresis evident in the relation-
ship between flutter speed and in-plane tension, Such an effect is con-
sistent with the effects of'nonlinear aerodynamic loading at hypersonic
speeds, which are easily and accurateiy represented for panels by non-
linear piston-theory aerodynamicé. In general, these nonlinear aero-
dynamic loads are of the "soft" type, in that they produce forces aug-
menting any transverse panel motion. On the other hand, the more fa-
miliar geometric panel nonlinear effects are of the "hard" ty§e, in that
they produée in-plane panei loads that resist transverse displacement.
It thus seemed conceivable that there would be circumstances, perhaps
exemplified by the experiments in Ref. 1, where the aerodynamic non-
linear effects would in part be dominant and lead to the hysteresxs'
effect observed, There is also the broader question of stabillty to
large disturbances: Refs. 2 and 3 deal with this in different ways,
In Ref, 2,-Bp¥otin and co-authors showed that nonlinear hypersonic
aerodynamic loads can produce sifuations whére a panel is unstéble in
a parametér region where stability would be predicted with linear aefo-

dynamic loading, provided the initial disturbance is of sufficient



magnitudé. In Ref, 3, Librescu was able to demonstrate a similar effect,
albeit not sd precisely, with an analysis based on Lyapunov stability
theory. This question was pursued further, with more realistic panel
parameters, as part of the study described in this report, The effects
of nonlinear aerodynamic loads on panel posteritical response were also
surveyed, and results have been published in Ref. . The effects of
derodynamic nonlinearities on étability were evaluated by determining
constant-initial-energy amplitude-sensitive stability boundaries and
comparing them with the corresponding linear stability boundaries, Pre-
liminary results were presented in Ref. L, and a parametric survey was
presented in Ref. 5, A final section treats an attempt to develop an
alternative method of analysis for systems where amplitude-sensitive
instability is possible; much of this section is the work of Dr. Sayed
D. Hassan. More detailed summaries of work performed during the first
four years of the grant period will be found in Refs. 7-10.

Another important effort supported by the grant concerned the ef-
fects of a viscous boundary layer on unsteady panel aerodynamic loading,
This work is described in detail in the Ph.D. dissertation of Dr. J. I.
Lerner, and is incorporated into this report by reference (Ref. 6},

The author is greatly indebted to Professors Holt Ashley, J%an Mayers,
and Krishnamurty Karamcheti for many helpful discussiohs, to Mr. James
Stein for valuable computer-programming assistance, and to Dr. Ahmed A4,

Kamel for consultations concerning his perturbation method,



IT. EQUATTIONS OF MOTION

Consider the two-dimensional panel, or plate-column, illustrated in
Fig. 1. The supports are hinged, and the in-plane motion at one end is
resisted by a distributed spring of constant K .* The panel is loaded
by a static pressure difference 55- s an unsteady pressure difference
p(x,t) - P, , an initial static in-plane applied load ﬁ; » and a sub-
sequent time-varying in-plane applied load Ro(t) . The unsteady pres-

sure is approximated in hypersonic flow by a third-order piston-theory

expression
= = = — 2
- - 24 la‘la‘il._rL?“*lM 1 gw | aw
PP, = M[U S T ax (U S5t 7o

(10 (E’E)5 ] | (2.1)

A third-order term is included, because such a term will result in work
done through a simple-harmonic cycle of panel motion, whereas the second-
order terms will not. The pressure is assumed to act normal to the in-
stantaneous panel surface. Since the structural representation of the
panel allows for significant rotation of panel elements about a span-
wise axis, order-of-magnitude consistency then dictates includiﬁg as
well as transverse aerodynamic-loading an in-plane aerodynamic load
[(p —pm)L - 0p){aw/3x) , where the subscript L denotes the linear
portion in Eq. (2.1).

The panel transverse displacement is represented as a series of

assumed modes satisfying the geometric boundary conditions of =zero

¥ ‘
See the Nomenclature for definitions of symbols.



displacement and curvature at each end:

N

wlx,t) = Z 2 () sin K (2.2)
k=1 :

A consistent assumed-mode expression for the in-plane displacement is

given by
CTlxt) - [ER+b‘O(t)1§+Zb“k(t) sin K (23

Here E£ is the initial panel in-plane displacement at x = a due to
the application of the in-plane load §; , and Eb(t) is the in-plane
displacement at =x = a resulting from the subsequent unsteady panel mo-
tion, Thé reasons for this division will be discussed below.

Hamiiton's principle is now used to derive the Euler-Lagrange equa-
tions of mofion, as outlined in Ref., 7. The potential energy of the sys-

tem is given by

1 2 Eh o 1 [ \° 3%w \2
W = - f — S | =t -\ + D ——2— dx
2 0 1 - v ax 2 \gx %
- [RDPg * (Rx + RO) by - ;Kbo : (2.4)

This expreésiqn represents the strain energy of the panel diminished by
the potential of any conservative external loads. The structural repre-
sentation of the panel is consistent with the assumptiéns of small strain,
a linear stress-strain law; and element rotations whose squares are small
relative'tblunity (see Ref. 4), and it leads to the familiar von Karman
structural operator, In the potential, it has been assumed that the re-
straint spring is not attached until after the load E; is applied; this

is an artifice for ensuring that in-plane tension is in the panel even



when K =lmrM; The unknown Eﬁ is needed simply to account for the
corresponding panel displacement. This formulation also implies that
the panel is initially restrained from bucklihg, should supercritical
compressive in-plane loading be applied.

The kineﬁic energy is given simply by

pmhj: (g%)gdx o (2.5)

The kinetic energy associated with both in-plane motion and rotary in-

PO =

T =

ertia has been neglected. In-plane inertia would have to be included
if parametric stability of the panel, under the load Eb(t) , were to
be studied. Here RO is included only to model the varying tension
used in the éxperiments of Ref. 1, where in-plane inertia clearly was
not a factor, Rotary-inertia effects are important only if the wave-
length of the panel flexural mode is éomparable in magnitude. to the
panel thickness; such small wavelengths are not expectéd for panel
flutter,

The transverse generalized forces are
a
. k :
(F, )y = f [- (p-p,) + 2p] sin —;de , k=1,2,...,N (2.6)
: 0

Note that unsteady cavity effects, which in some cases are quite signif-
icant, are not taken into account here. The in-plane generalized forces

are

a
(Folg = f ((p-p,) - o] g% = ax
0
(2.7}
a —
(F ) = f [P -ped; - opl gﬁsm——dx , k=1,2,,,.,2N
0



and w are inserted in the expres-

The assumed-mode series for u
The

sions for potential energy, kinetic energy, and generalized forces.

Euler-Lagrange differential equations then become, after considerable

manipulation,
oW _ Eh _
-— = 0 = R_- b
= X 2 R
aby a(l - v7)
(2.8)
W _ _ Eh(g +b )
-—+(F), = 0 = R_+R -Kb - — £
abo a(l - v7)

{continued)
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Multiple summations in these equations are indicated by multiple indices
on a single summation sign, and the terms are arranged so that any com-
bination of indices giving a zero denominator is to be excluded from the
summation. .-(This convention will be observed throughdut this report.)
O,'Eﬁ » and the 5;
in Eqs. (2,11), and this produces a set of second-orde:, quasilinear

Equations (2.8) and (2.9) are used to eliminate b

ordinary differential equations governing the E£ . After nondimension-

alization and copious manipulation, this set becomes:

10
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With the exception of a slight difference in the definition of « , and

the time-varying in-plane load R, , the terms up to and including the

first appearance of &p are the game as those derived by Dowell (Réf. 11):
the von Kérﬁée nonlinear structural operator for the panel, with linear
piston-thedry.eerodynamic loading. The system parameters for this com-
bination efrterms are X , p/M s O, Dp o, Rx » and RO-_;_ Furthermore,
Dowell pointed out that these equations can be recast so as to eliminate
the explicit appearance of & , so that only one (nonzero) value of «
needs to be'eonsidered. With the addition of the nonlinear aerodynamic
‘terms, the situation becomes more complicated, A new parameter, h/a ,
appears exp11c1tly, and p and M must be specified ‘separately. Also,
the exp11c1t dependence on @ can no longer be eliminated. The nonlinear
aerodynamic terms appear in Eqs. (2,12) in the followihg order: first,
those arising from the terms in (F )k dependent on (aw/ax) s (aﬁ/ax) s
(3w/3t) , and . aw/at} s respectively; secondly, those arising from the
terms in (FK)O and (F )k dependent - on (aEYBx)E (5G/ax) , (aw/at) ,
and ZE (56/5x) » respectively; finally, those arising from the terms in
(Fz)k depepdeht on aw/ax)5 « Wote also that the panel geometric non-
linear terms are cubic in the ak s Whereas the nonlinear terms from

(Fz)k are linear in h/a and quadratic in the a,  » and those from

(Fx) and . (F )k are quadratic in h/a and cubic in the a .

For the- complete equations, the functional dependence of the panel

transverse dlSplacement can be stated as
- L X e h V_ ‘
w(x,t) = hFn 27 T3 A :D‘)NJMJ;}O:) 7)Ap)RxJRO (2.13)

The method of solution is to integrate Eqs. (2. 12) from glven initial con-
ditions K;ﬂ and to observe the resultant panel motion versus time. The
use of piston theory, with its point-function relation between pressure
and panel motien, makes this possible. The initial state- space vector

E; will not always govern the asymptotic behavior of W "3 instances
where this does occur will be discussed below. The computer program to
integrate these:equations was set up so as to allow individual nonlinear

aerodynamic terms to be left out or included, as desired,

1k



III. VERIFICATION; PRELIMINARY ASSESSMENT
OF AERODYNAMIC NONLINEARITIES

3.1 Comparison with Previous Results

In order to check the numerical integration, a few test cases were
run with linear aerodynamic loading, and the results were compared with
those from Ref, 9. Figures 2 apd 3 gﬁéw the dimensionlessmpanel drs-
placement at the three-quarter chord Gé. dimensionless time for values
of system parameters noted on the figures, Figure 2 corresponds di-
rectly to Fig, 2 of Ref. 11, and the limit-cycle amplitude taken from

"Fig. 3 checke‘that given in Fig. 5 of Ref. 11, All the other test cases

showed similar good agreement.

5.2 Behavior with Zero System Damping

¥ 1

Some. 1nterest1ng and unanticipated problems were encountered when
the equations with linear aerodynamic loading were solved for zero sys~
tem damping. Figures } and 5 show the panel response for the same set
of initiai,conditions and system parameters used for Figs. 2 and 3,
except that u =0 . After an initial transient showd in Fig, 4, the
response becomes periodic but not simple harmonlc, as is evidenced in
Fig. 5. The ‘response curve illustrated 1n Fig. 5 continues indefinitely
without change, and the peak amplitude 1s,d1fferent from that shown in
Fig. 3. That the system does demonstrate instability for this set of
parametere is illustrated in Fig. 6, Here the initial displacement at
the three -quarter chord is smaller than that in Figs. 2- 5 by a factor
of approxrmately four, and the amplitude clearly grows with time. It
then decreasee; and the same process is repeated agaih (but is not shown
here). Note also that the maximum amplitudes are different for the dif-
ferent initiel conditions. This does not mean, however,‘that a unique
1imit~cycle.amﬁlitude and frequency are not assoclated with a given set
of (supercritical) system parameters. In Fig. 7, the panel response is

| shown for N‘¥‘2 and for supercritical system parametersﬁe The initial
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conditions in this case were obtained from a harmonic-balance solution.
It is seen that there is no initlal transient, and the panel response
continues at the same amplitude., Solutions for other values of system
parameters exhibit the same behavior, and it can therefore be concluded
that the method of calculating the panel motion with time will produce

a limit cycle of constant amplitude for zero system damping only if the
initial conditions correspond exactly to the limit-cycle modal ampli-
tudes. For.ény other initial conditions, the panel oscillates between
stable and unstable states. If, on the other hand, the‘system parameters
are subcritical, the panel will oscillate without deéaying, and the peak
amplitude is determined by the initial conditions. Figures 8 and 9 show
the panel displacement at the three-quarter chord for a suberitical value
of A and different initial conditions., Here it will be observed that
the peak amplitudes never exceed the initial amplitudes, although the mo-
tion is not simple harmonic.

These results can also be interpreted with the aid of some general
stability considerations for autonomous systems (Ref. 12). The panel
equations for zero system damping describe a system whése state is
uniquely détefmiped by the 2N modal amplitudes and velocities a s
ék , k =21;2,...,N » or in other words by a point in the 2N-di@ensional
space Ea . The origin of this space is clearly an equilibrium point
— it corresponds to the panel in a flat, undisturbed state — and it is
desired to examine the stability of the panel in the neighborhood of this
state, In brief, the origin is stable if for any spheré S(R) of radius
R in E§N y- centered on the origin, there exists anotheér sphere S(f)
of radius r'= R such that any motion originating in S(r) remains in
S(R) evef;hfter. This stable behavior is exhibited in Figs. 8 and g,
Reducing ﬁhéfinitial ampiitude reduces the maximum resﬁltant amplitude,
so for any given bound on the amplitude the initial ampiitude can be re-
duced to keép,the resultant motioh within the bound. On the other hand,
if such a éphere S(r) cannot be found, the origin is unstable, Figures
L, s, and 6.i11ustrate this unstable situation. It is evident that there

is an amplitpde that the resultant motion will exceed, no matter how small

16



(but finite) the initial amplitude is. These same conclusions can be
drawn when the initial conditions are broadened to include nonzero in-
itial velocities, and the reader is referred to Ref. 12 for the full,

precise definitions of stability and instability.
3.5 Isolated Effect of Aerodynamic Nonlinearities

The effects of aerodynamic nonlinearities were first considered by
introducing into the equations of motion only the term from (Fz)k pro-
portional to (aayax)g s, with the in-plane restraint parameter « set
to zero, sQ that no panel geometric nonlinear terms were present. For
this single nonlinear aerodynamic term, only the new system parameter
M(h/a) isrrequired. In Fig. 10, the panel is observed tb be stable
for X = 330. and initial conditions given by 31(0) = - 32(0) =1.71 .
In Fig. 11, the panel diverges with all system parameters unchanged and
a slight incfease in the initial deformation, to al(Q)'= - aE(O) = 1,72 .
The divergence in this case is into the cavity, as expected, since an
aerodynamic pressure proportional to (a;/ax)z produces an increased
pressure on the free-stream side of the panel for any panel displacement.
Here, then, the asymptotic panel behavior is clearly governed by the in-
itial conditions. On the other hand, withllinear aerodynamic theory the
panel would eventually return to its initial flat state, no matter what
initial conditions would be given. {The classical linear critical value

of X for this case is approximately 34% — see Ref. 11, for example.)
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IV. EFFECT OF AERODYNAMIC NONLINEARITIES
ON POSTCRITICAL RESPONSE

Of interést here is how the aerodynamic nonlinear terms affect the
motion and peak stress levels of the panel as it oscillates at a super-
critical value of XA ., Comparisons were made between the limit-cycle
frequency,and amplitude obtained with the nonlinear aérodynamic terms
and those obtained with linear aerodynamic terms. Various combinations
of system.pargmeters, roughly characteristic of those found in practice,
were tried}  Various combinations of nonlinear aerodynamic terms were
also tried, in an effort to identify those terms that would be important,
It was soon found that for the system parameters surveyed only two had a
significant effect — those resultlng from terms in (F )k proportional
to (aw/ax) and (aw/3x) (aw/>t) . With only these aerodynamic non-
linear terms in Eqs. (2,12), further simplification can be achieved
through the transformation used by Dowell in Ref, 11. With Jzk = {a)% &
Ry = = (1-&) R, , and Zp = (a)2 » the parameter & can be eliminated
explicitly from the equations, and in addition to Dowell's parameters a
single new one appears —-Mh/a(a)2 . This parameter then serves to mea-
sure the-relatlve importance of nonlinear aerodynamic effects, since it
ratios the_p;incipal factor governing the nonlinear éerodynamic terms to
the one governing the panel geometric nonlinear terms.. The functional

dependence of the panel transverse displacement simplifies to

ol
(b.1)

Postcrltlcal panel response with linear aerodynamic 1oad1ng was com-

W(x;t) :-_. [h/(a)e] Fn[x/a: T;Kg:h) P/M: T:Pih/a(o-{)?:‘ﬁpy RX,R

pared to that with nonlinear aerodynamic lcad1ng for various combinations
of system parameters. A maximum value of 0.05 was taken for Mh/a (say,
h/a 0. 005 and M = 10.0 ). A typical comparison is illustrated in
Fig. 12, whlch compares the growth in peak limit-cycle amplitudes at

x/a = 0.75 as a function of X for linear and nonlinear aerodynamic

18 o



loading, Véiﬁes of other system parameters are given iﬁ.the caption,
For the linear aerodynamic case, the panel oscillates as far into the
airstream as it does into the cavity., With nonlinear aerodynamic loads,
the peaks -into the cavity (negative w) are greater, énd those into the
flow (positive w) are less. This effect is caused primarily by the non-
linear aerodynamic term dependent upon (a;/ax)g , which provides an
overpressure, tending to push the panel into the cavity, -as a result of
any dev1at10n of the panel from its flat initial p051tion. However, any
changes brought about by the nonlinear aerodynamic loading are quite
small, even well into the supercritical regime, and the frequency of
oscillation is virtually unchanged.

Since fhe‘in-plane restraint parameter O is the key pafameter
governing'the'influence of the panel geometric nonlinearity, one might
expect thatrgreater differences would be observed as 'q is reduced. A
1inear—noniinear aerodynamic comparison is shown in Fig. 13 for N = 550
and varying o . It can readily be observed that the nonlinear aero-
dynamic terms do have a relatively greater effect, td_the extent that the
peak dispiééement into the external flow at x/a - 0.75 is reduced some
°3% for @ =0,1 . On the other hand, the corresponding peak displace-
ment into tﬁé panel is increased by very little, and the frequency re-
mains virtually unaffected, .

Anothérrhnportant consideration is the change in. stress caused by
nonlinear éerodynamic loading, The stress in the panel can be written

in terms of modal amplitudes and other system parameters as (Ref, 11)

' 1 -ve 2 - kmx
g = ———7 = - E (kﬂ') L 9in —
*  EMm/a)¥ *  n a

N
R+ (1 —(I)R.O

. o .
o+ +£ E (kﬂ'ak)2 . (h.2)

12 Kol

The maximum or minimum of o, at any instant of time occurs for

= & h/E ; So it is seen that the stress distributions for maximum
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and minimﬁﬁ stress will plot as curves symmetric about a mean, the stress
due to stretching, given by the constant terms in Eq. (4.2). Figure 14
compares these stress distributions in the panel, at the instant the
displaceﬁést‘st x/a = 0,75 reaches a peak, for & = 0.1 and X = 550 .
The maximﬁmlfénsile and compressive stresses occur at k/a = 0,85 , and
the nonlineaf'aerodynamic loading increases these stresses by at most 5%.
For aluminum, E = 107 psi and v = 1/3 ; with h/a = 0.005 , a stress
T of 607corresponds to a dimensional stress E; of 16,900 psi, which
is well below the yield stresses of approximately 60,000 psi in tension
and 40,000 psi in compression. Convergence studies on stress by Dowell
(Ref. Q) indicate that six modes (N = 6) may not bs‘sdequate for
stresses, although this number is satisfactory for displacements. How-
ever, it is not felt that using enough modes to converge the stresses
would alter the conclusion that the assumption of stress levels within
the linear range is a valid one. o

Another key assumption in the derivation of thé ﬁanel equations of
motion is that '(a;yax)z is everywhere much less than unity. In terms

of modal amplitudes, this is

-2 2 / N \ 2

oW h k= o
- - kma, cos — |- (.3

i

This distslbution was calculated for various large-amplitude panel states.
Generally, fﬁe largest values were at x = a , and the largest of these
calculated‘ﬁas approximately ©.01, which was calculated from the mode
shape correspondlng to the nonlinear-aerodynamic stress distribution of
Fig, lh, Values caleulated for other cases and over other portions of
the panel were much smaller, thereby strongly suggestlng that the
"moderate- rotatlon” asgumption is also justified.

One f:nal check involved testing the accuracy oflfhe numerical in-
tegratiod,_ This was done by integrating the'equations of motion backward
+in time, with initial conditions given by the state'of the panel at some

instant during a previous caleculation. Panel motions with time could
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then be coﬁpared. The parameter in the numerical-integration subroutine
governing aécéptable relative error between integration steps was kept
small enough so that no appreciable differences arose between forward
and backward integrations over the longest time intervals contemplated.
The results presented in this section are representative of the re-
sponses calculated for a variety of conditions., From this evidence, it
can be concluded that the influence on postcritical response of nonlinear
aerodynamic- loading, of the type considered herein, is minor. The post-
critical mofion is generally such that the aerodynamic terms quadratic
in aﬁyax do very little net work over a cycle, and the cubic terms,
which would'do work over a cycle, are not important unless Mh/a is
unrealistically large. It was observed, however, that transient mo-
tions — such as those that were calculated before steady-state ampli-
tude and frequency were attained — were affected markedly by the non-
linear aerodjnamic terms., It is therefore entirely possible that these
terms would be very important when panel transient response is studied
at hypersonic speeds. The two nonlinear aerodynamic. terms used in this
section were the only ones retained for subsequent studies, except for
occasional'chéck runs to ensure that other terms were not contributing

significantly to the results.
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V. EFFECT OF AERODYNAMIC NONLINEARITIES
ON STABILITY

5.1 Comparison with Experiment

As a first step towards reproducing the experimental conditions of
Ref. 1, as discussed in Sec. I, it was. decided to stuﬁy.the panel re-
sponse as the-in-plane applied load was variled across the linear sta-
biliﬁy boundary. This involves scheduling the time~vérying load R,
with time; a typical case is shown in Fig. 15, The panel was initially
set in motion at point A , on the stable side of the iinear stability
boundary,. ~ Then the in-plane load was decreased to péint B , on the
unstable side, and held there until the motion of the panel was estab-
lished, 'Finaily, the load was increased to point A :, where the non-
linear aérodjnamic terms dictate the resultant sfability characteristics,
Figure 16 prééents a time history of the displacement at x/a = 0.75 for
values of l_ and in-plane }oad corresponding to poiﬁt A ‘in Fig. 15.
The motidn‘shown is that which results after the in-plane load has been
eyeled from:point A to point B and back to point A . Figure 16
shows that ﬁhe energy imparted to the panel while the load is at poiht
B is_endugh to cause instability with the load at point A . To
stabilizé-thé panel, it would be necessary to increase the load even
more. . _

The's¢eﬁério described above is consistent with the experimental
observations of Ref. 1, but the parameters used were nof comparable.
The next step was then to attempt a closer comparison by looking for an
amplitude-sensitive instability with parameters correspdnding‘to the ex-
perimental conditions. The following parameters were chosen: Rx = 160 ,
A =2000 , M=10, u=0.1, &% =0, and h/a = 0.00054 . These values
give a condition that is just on the stable side of the linear stability
boundary fof'a panel on hinged supports. Experimental'édge conditions
would be Béttéf represented with clamped supports, but the theoretical

differences between stability boundaries for these two edge conditions



are not really significant when the in-plane applied loads are as large
as they were in the experiments (see Ref. 1), The remaining unknown
parameter is & . Various initial amplitudes were used, appropriate
to flutter amplitudes observed experimentally (w * 10 in some cases},
and O was varied in order to see if these initial amplitudes would
produce an unstable panel motion. The only unstable motion that could
be produced was an oscillatory but divergent one, for values of & on
the order of 10-5. These results indicate that nonlinear aerodynamic
influences are not the cause of the experimentally observed behavior,
since the value of @ needed and the corresponding calculated unstable

motion are not consistent with the experimental setup or cobservations.
5.2 Constant-Initial-Energy Stability Boundary

After it was demonstrated that energy levels capable of causing
amplitude-sensitive instability could be generated by unstable panel
motion near the linear stability boundary, it was decided to consider
how the linear stability boundary — presented, say, in the X - R
plane with other parameters fixed — would be changed for a given level
of initial excitation.

Portraying analytically the dependence of the amplitude-sensitive
instability on E% would be a formidable, if not impossible, task,
since it has 2N elements. One simplified approach is suggested by the
work of Dimantha and Roorda (Ref, 13). They investigate the stability
of nonlinear nonconservative systems with the direct method of Liapunov,
with Zubov's procedure for constructing the Liapunov functienal. Tt is
not at all clear whether this method is applicable to the panel stability
problem; however, the ideas in Ref, 13 do at least suggest a meaningful
procedure for the numerical experimentation described in this report,

In principle, one can determine a stability boundary for the panel in
terms of the elements of E% for fixed system parameters. This boundary
can be viewe@ﬁ?s a hypersurface S5 in the phase space determined by the
AO .
the panel in its flat undisturbed equilibrium position,} Any combination

elements of (Note that the origin of this phase space represerts
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of initial conditions that plots on one side of § will result in un-
stable panel motion, while a combinétion that plots on the other side
will result in stable motion. Dimantha and Roorda proposed to calculate
the minimum total panel’energy on S , such that this minimum value E1
will determine a hypersphere that just touches S at one or more points
and is everywhere else on the stable side of 5 , Thé energy El then
provides an upper bound for the initial disturbance energy such that the
resultant éanel motion is stable. In similar fashion, Dimantha and
Roorda also ﬁroposed to determine the maximum total energy on § ,

thereby determining a hypersphere of energy level E that gives a

lower boundlén.the initial disturbance energy for unitable motion. The
reader is referred to Ref. 13 for the full details of this analysis., It
suffices ﬁo séy here that these ideas suggest determining a nonlinear
stabili;ytbbﬁndary in the X - Rx plane for constant ipitial energy

and comparing this boundary with the linear stability boundary, which is
independent of the initial conditions,

The dimensionless panel energy is given by (Ref. 10):

a L N
. = Z 2 Z 2220
E = —EF = — a + — QO kg a, a
Dh® 4 kg !
kzl k, ,EZ]. 7 ’
_ Tre N Wh N
Lo Z 22 L 2 :
+ : R kK a o+ : ka (5.1) .
k=1 k=1 o

Note that the time-varying applied load, RD s 1is here set to zero,
The initial choice of energy level was that corresponding to supercritical
panel motion ﬁear the linear A - Rx stability boundary.' 1t was further
decided, purely arbitrarily, to fft al(O) = - a2(0) and to let these be
the only nonzero components of AO . With EO = 1750 and @ = 0.1 ,
the variation of al(O) = - ae(o) with R is given in Fig. 17,

The remaining system parameters were then chosen, and a new stability
boundary was détermined, as is shown in Fig. 18. Thié boundary was ob-

tained by integrating the panel equations of motion, with initial
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conditions &étermiﬁed as discussed above, and observing:whether gor not
the calculatéd panel motion persisted or died ocut past thg initial
transient, 'The complicated nature of the dependence of this stability
boundary on the initial energy (and, ultimately, on 'K; ") can be in-
ferred from the shape of the boundary. As noted in Ref, 5, the onset
of the instability over virtually the whole boundary is characterized
by a strong traveling-wave component, quite similar to the "periodic
but non-simple-harmohic" behavior noted by Dowell (Ref, 11) for large
compressive va1ues of Rx with linear aerodynamic loading. Observe
also that the maximum reduction in stability occurs for zero or slightly
positive (tensile) values of R . The behavior of the nonlinear sta-

bility boﬁndéfy near Rx = ~ 0,5 ﬂE has not been explained.
5.3 Parametric Survey

The pfaéedure of the previous subsection was then used to determine
unstable rggiOns with variations in other system parameters, Figure 19
gives thé'ﬁé;iation of the value of * where instability first occurs
with both different energy levels and different modal content, TFor
EO = 1750 -, there are only minor differences iﬁ_fhe critical value of
A among the three sets of nonzero elements of AC that were examined.
Almost tripling the initial energy for one of these sets produced little
change in thg critical value of A ., For E, = 3500 , there is an un-
stable band ppunded.by stable regions, suggesting the game sort of con-
tortions in the stability boundary near Rx = 0 as was observed in
Fig. 18 near R = ~0.5 ﬂ? . . _

Figuré32Q presents the effects of both positive and negative static
pressure differences for Rx = 0 aﬁd the initial conditions of Fig. 18.
Negative valﬁes of Ap produée a static pressure tending to push the
panel into-the cavity, reinforcing the deformation caused by the aero-
dynamic term proportional to (aGVax)E and slightly adding to its de-

stabilizing influence. Just the opposite occurs foripDSitive values

of Np .
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1 :
As would be expected, the parameter Mh/a(a)® has a strong in-

fluence on the amplitude-sensitive instability, as is shown in Fig. 21.
Increasing values of Mh/a(d)% y which represent increased relative
importanceiof the nonlinear aerodynamic terms, result in monotonically
decreasing critical values of X . The slopes of these curves at the

A axis give a measure of the importance of nonlinear aerddynamic effects,
Generally, thEy should all be zero for zero initial energy and decrease

as the 1n1t1a1 energy increases, but the results in Flg..19 suggest a

complicated plcture, and any unsupported generalization must be viewed

with cautlon.,

26



VI. A NEW METHOD OF ANALYSIS

6.1 Kamel'ngerturbation Method

Although it produces a great amount of informatibn, direct‘integra-
tion of the eéuations of motion has certain disadvantages. The informa-
tion produced is essentially similar to that produced experimentally, and
the analysf‘is forced to conduct a number 6f "numerical experiments" in
- oxrder to determine the influence of the system parameters on the panel's
behavior. Clearly, it would be extremely worthwhile to have a method of
analysis ﬁhat would permit the direct analytical determination of the
information desired. For example, such a method would be very useful in
calculating an amplitude-sensitive stability boundary, such as the one
given in Fig. 18, What is de51red then, is an approx1mate method that
is capable of displaying analytlcally the influence of such parameters
as K% ox ‘Mh/a on this stability boundary. The perturbation method
of Kamel (Ref, 14), which was independently developed at Stanford con-
currently Qith the present work, appeared to be a likely candidate. A
brief description of this method follows; the reader is referred to
Ref. 1l for more details, ‘

Consider a given system of ordinary differeﬁtial equations written

in the following form:

. k ' )
Arie) = F@Tie) = <2 @ (6.1)

k=0

i

Here ¢ is'a small parameter, and §> is assumed to'debend analytically
on € , so'that the Taylor-series expansion of Eq. (6, 1) is valid. The
idea underlylng Kamel' s method is to transform the dependent variable

S(t) to a new set, C(T) » such that the transformed equations governing
this new set have certain characteristics., For example, to investigate

stability the analyst is interested in the asymptotic behavior of ETT)
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He would therefore construct the transformation so that the new dependent .
variables dlsplay only the secular, or long-period, behav1or of the sys- '
tem, By do;ng.so, the- analyst presumably also comes uplw1th a much simp-
ler set ot,eﬁuations that he can solve analytically.: This transformation

is of the form

- k _ -
c(tie) = IAt) + S SLUNCAS (6.2)
N kzl N
-
such that ¢(7} satisfies
dg? = - & :?‘ -
e = W(e,te) - E LRI CE I (6.3)
k=0
for the initial conditions
- o x : ‘
c(7;0) = ¢ (6.4)

The functidns ﬁ; are to be determined from the requirement that the

transformed differential equations

o

= = k =
S(13e) = Fome) = Y 5 (o) (6.5)

k=0

contain 0ﬁ1§ secular or long-period terms. The f; are obtained by

elimiﬁating'these same terms from the governing differential equations

for the Wk :'
k-1
= k-
B 1 P k-1,
= + flf -£ C'f gf,k-f 3 k—la).-. (66)
" =1
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where

: k
-, B _Z Ck-l Ry
i1 m-1 "m"k-m, £
m;l

oF M,
L&? = Wk - F (6..7)
¢ 3¢
rgf
2 ) -, (k)
Go = ——— , By = 8
K k(o) 0,k

Equations (6.6) and (6.7; form recursive relations for obtaining ﬁ;
and El ; since all other functions in these equations‘dAn be constructed
from known qﬁéntities. This ability to obtain higher-order approximations
recursively is one of the principal advantages of Kaﬁe17$ method.

With ﬁ; "and 'EL calculated to any order gssiréd, the original de-

- : - .
pendent variables ¢ can be found in terms of ¢ in the form

L2 e k2o
D DN (6.8)
k=1
: g
A recursive formula for the S is
k-1 S
=g = k-1 — = ‘ :
o (o) = - Wk(c) - 2 : Cor1 Sp,kes(©) (6.9)
=1 :

with

k .
E; = - E c L E; E(Eﬁ o (continued)
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and
LF = =% Ea,k = e (6.10)

In summary, then, Kamel's algorithm proceeds by determining the
ﬁ; and f; from Eqs. (6.6) and (6.7), to whatever order is desired.

The E; are chosen so as to cancel secular terms from Eqs. (6.6). These

f; > in turn, give the differential equations for the,transforméd depen~- -
dent variablés, from Eqs. (6.5). These equations are intégrated, and
Egs. (6.8);(6,10) are used to determine the long-peridd behavior of the
system, Tﬁié.method is similar in spirit to the method of multiple time

scales, as applied by Morino {Ref., 15) to panel flutter.
6.2 Examble — Two Modes

To illustrate the application of Kamel's method, let,us‘consider a
two-mode vérsion of Eqs. (2.12), with R0 =0, &% =0, and the two non-
linear aerodynamic terms that were previously found to be the most impor-
tant - thoée propor?ional to '(a;zax)e and  (3w/5x) (3w/3t) . In addi-

tion, let T = T(l)§ s Zk = ak01)§ » and define

> (6;11)

Here allowance is being made for small perturbations from A = lc aﬁd.
from Rx 5;0; 5 so that lc is the critical value of .1 - for the 1inear
theory with no in-plane loading. If substantial values of Rx are re-

quired, then Rx/'rr2 can be treated as another fixed systeﬁ parameter,

and terms involving it can be left with the other linear terms. With
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these scalings, Eqs. (2.12) can be written for two modes. as

L.
o (p )2"&.‘ 'JT}-L N 8 _ ‘n’h -
a, + {—-}) a, + —a -—a, = --—E¢.a
1 -1 1 2 21
M e 3 A
{(v+1)m Mh (;2_+ E%’;g)
) 1. 2 ‘
3 a{a)z 5
o |
(r+1)r fp Mh ~ L Mo ~2
- . — (a,a, - 2a_a,) - — a, (a + kal)
. (M)a(a)% 192 2% n IS T
. ui.% . 16ﬂﬁ o 8 _ 1*’.'1‘h
a, + (:f. 2yt a, + —a; = - — (62 - 561) a,
M7 A 3
‘ c c
Lo N
Br{y +1) Mh _ (y+1)m fp\* M1 _ .
- a. a - a a
15 a{x)z 12 L M a(a)z 1 -2__
127 - ~p
- . ,ae(al + ha2)
A -
c
=%t &

Note that the dot superscript here denotes differentiétiqh with respect
to 7 vrather than Tt ; this notation is restricted te this Seection.
The equations have been arranged so that all nonlinear terms are on

the right-hand sides. With the presumption that a ='0(€1) » .these

k

terms are arranged as quadratic (Qk) and cubic (C terms, For

1)
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n/M = 0.0l ', the characteristic equation of the linear system produces
R, = 274,545 , and four roots o, and eigenvectors i?k = {1, Uk,.2> 5

arranged in complex conjugate pairs as follows:

o = 1,736608 i

o, = =-0.10+ 1,736606 i

o5 = - 1.736608 i

o, = -20.10 - 1.736606 i
Ule‘ = - 0.9978764 + 0.0651227 i
U, = - 0.9978751 - 0.0651227 i
Usp = - 0.9978764 - 0.0651227 i
Uhg- = - 0.9978751 +.o.o651227 i

Since the nonlinear terms in Egs. (6.12) contain time derivatives,
the equations_'must be manipulated so as to put them in a form suitable
for the application of Kamel's method., This is accomplished by vari-

ation of parameters., With a = (’51,;2) , let

- : ~ O-k? . .
2E) = Y et g . (6.13)
= o
It is then ;e'i:"['uired that
Y ~ :
N ka‘l.' ‘
a = Z 0 © ?k Co (6.14)
‘ k=1
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which impiies
L ~ :
. T . L §
E ¢ e . = O (6.15)
k=1 '

Substituting for the a  in terms of the ¢, in Egs. (6.12) yields

:' L ] Gk? : o
. Z o e U = F = (Q+C,Q + Cp) (6.16)
- k=1 |

Equations (6.15) and (6.16) constitute four equations in the four new

dependent variables ck(?) ; note that ¢ does not appear in either
the Qk 'orithe Ck s since from Eqs. (6.14) the a depend only on
the SRS Equations (6.15) and (6.16) can now be inverted to give a

set of equations in the desired form:

i~

-0, T

e = E ({[B]{G})k - gélhgf?}_.‘.. (6.17)

The matrix [B] is a b « 4 matrix whose inverse is

1 1 1 1]
o } 1 U12 U22 U52 Uhé . ‘
T - (6.18)
I o] o - o} '
2 L
1 03 "
L% %2 %% B2 e |

and {G} is a L x 1 column matrix
T o
{}" = 0 0 Q@ +C Q+Csl (6.19)
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For example,

(1) -0‘17{" Trh- h c’k?
gl = e B13 (_;—EEche +Q1)
¢ k=1
hﬂﬁ A UQ? .
+ Blh - —):—-— (62 djel) Z ckUk,E e + Q2 : (6.2_0) |
: c k=1 '

Here Qé is QSed to denote that portion of Qk that ig¢ quadratic in the

a and therefore quadratic in the ¢ .

k

k - .
. Clearly, Eqs. (6.17) cannot be integrated in closed form, although

-presumably théy could be integrated numerically, A transformed set of
dependent variables is now sought that will exhibit the asymptotic be-

havior of the panel:
¢, = £, .+ £ 4+ ... R (6.21)

The first sfep-is to go to Egqs. (6.6) for k =1 . A typical equation .

that results is

afy g -
1
~ = £, - gf ) (6.22}
av
where gfl)?fis now written in terms of the EL réther-than the g -
The function £ is to be chosen s0 as to eliminate'sécular terms from

11 .
Eq. (6.22). Examination of Eq. (6.20) shows that such terms will come

about only where k = 1 in the two ‘summations, as a result of cancel-
lation of thg*ekponentials. With the values of the ck"being either

pure imaginary or complex with negative real parts, there are no other



texrms in Eq; (6.20) that could produce asymptotic instability. Hence,

' L
7rh b N g
_ _ . . B - T .2
f1 7 7 B3 27 Py (&g =3¢1) Upp | @ (6.23)
c c
and similar reasoning for W12 gives
il
" lm ' 6.2h
fre = |7 P T % T By 7T (6 -3€1) Ul <5 (6.24)
c c )
For k=1 , Eqs. (6.6) then become
My, -c;rﬁ - u _ ck? .
R YE — E -0
N ? B1’5 N 62 c, € Q1
3T s c k=1
: kf i
+ B,y — (e, - 3¢,) E 9V e -G (s =12 (6.25)
c k=1
k¢
These equations are integrated to give the W, , for imput to Eqgs. (6.6)
. » :
with k=2 , and £ and f are chosén to eliminate any secular

Loy 22 (), ‘

terms, Cubic terms (gl and &, are involved, and the algebra
becomes formidable, so it will not be repeated here. (It was, in fact,
performed on the computér.} The type of secular term that is found is

illustrated bj_the form chosen for f21

1l e R - (6.26)

The paramefet uDe is a complex constant depending in a complicated man-
nar upon thé'system parameters and the elements of'the'matrix [B] .

For the panél problem, this second pass through the algorithm is all
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that is needed, and the differential equation for El can be written as

ey - {6.27)

c, = f,. + £ = D.,e, + D

1 11 21 11 2| 1

Note that Di is used to represent the coefficient of 4 given in

Eq. (6.25);A Equation {6.27) has the solution

o —2 o o~
‘ D. ¢ : 2D, T D. T+ 18
T T ] - 2RO [ IRy et 1 (6.28)
1 = %,0 N e
: 1R
here is the real part of D_ and ¢ is the initial magnitude
w DkR y . P k 1,0 o &

of e, rclgo)‘ . The phase angle 91(1) is given by,'(Gl,O = 91(0))

. - ~
B D D._c 2D, . T
° 8, = 8 4~ —=—1ta|1-BLL (e IR --1) (6.29)
’ 2D,.c D o

2R71,C 1R

It can already be seen that one important goal has beeh reéched, in that
the dependendé-of the asymptotic behavior of the panel on the initial
conditions is explicitly displayed in Eq. (6.28),

Equatidns (6.8)-(6.10) are now utilized to conschCtithé ck(?) ,
from which the ak(;) can be found from Egs. (6.13). 5Fo?‘the Oy ., we
find ' ' :

k(?) %G - G - W, (6T

awl k(zk’?) | —- o~ L .
—_ Wl k(ckJT) » k = 1?2}3-,’ b (6-50)
ack ’ :

It is not necessary, however, to calculate all of the terms in these .

equations, if stability 'is of interest, All that is necessary is to
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examine the secular terms, which are contained in E#(I) . This fact,
coupled with the requirement that the transformations of liqs. (0.13).

from complex , and ﬁ} s permits the asymp-

k %k’ 9
totic behavlor of the system to be examined very ea511y. For example,

produce real a

the asymptotlc behavior of al is given by
. _ Ul? _ .61?7.
: ?1(T} ~ ZRe (cl e Ull) = 2Re (él ?.  ) (6-51)..

Using Eq. (6.28) gives

: ~ -2 ~ ,

S ] D, T b__c 2D, T _ L e - ~

a, (7} ~ 2e. e 1R p - SRLO (IR )] o (w,T + DT + 8
1 - 71,0 D : 1 11
o 1R
(6.32)
with wl = 1011 . This equation can be manipulated to give
1

a) (7) ~ 2 ~ — cos inf + DT 4 91) |

D -2D, T : ‘ ‘
1+ R e IR 1 :

2 | - (6.33)

where DR;iHDlR/DER . The initial gmplltude cl’o .is seen to be one

half of 31(0) . The parameter D1 is linear in € and s s while

D, does not depend on €, Or €, , so it can easily be shown that Sl

can be expéndéd in a power series in € s as was assumed initially
(62 is assumed 0(61)) The parameter Mh/a(a)2 s which is the prin-
cipal parameter governing the amplitude-sensitive instability, influences
only Dy, '; : | _

The stability characteristics can be evaluated by examining the

amplitude tgrﬁ in Eq. (6.33). A number of cases can be distinguished:
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I. D, <0

R .
For T=0 > both numerator and denominator are negative, so
the ratio is positive, 1If E? 0= " DR ,» then a limit cycle
o _ — 2 : . S
of constant amplitude ,2c1 o is obtained, regardless of the
’ ) . .
s%gn pf D1R .
. Al DlR <0 : . o
If Ef 5 < !DR] , there is a limit cycle whose ampli-
2 — ~ 7
tude approaches 2c1 g @ 7 approaches infinity.
s ‘
If E? o |DR| » then there is a divergent insta-
)

bility at a finite time

5 .
R
In (l + EQ _)
' 1,0 }

2Dig -

. B. DlR >0 1
There is a limit cycle whose amplitude apprcaches

i l ‘ )
(- Dﬁ)Z » independently of the magnitude of ‘E? o
. L

II. DR;? 0
For ,? =G , both numerator and denoninator are positive.,

. D1R <0

Lo

Stability is indicated, since a; ~0 as T -ow .
B DR >0

There is a divergent instability at
D -

. R -

ln'( 1+ 22. ')..-

EDIR

“al
]
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L
changes sign-as A goes through l .

Note that D, will change sign, sinqe it is proportional to € » which

For a numerlcal example, let R =0 , so that ‘eé-z_f el . With
Mh/a(Od)2 = .158 s, we find ' o

D, = (11.76 - 0.5300 i) e, s D, = - 6,563 - 1.hob i

For A < lc ,:el < 0, so this is case ITA. The panel:iSlstable; no

amplitude-sensitive instability can occur. The sign of D1I . indi-
cates an incréase in frequency. For X > l s € > O:, and case IB is

appllcabIE'—-there is a limit cycle whose amplltude is 1ndependent of

€1 +0
that the SpEClal case

, and the frequency is reduced from its value at l lc . (the 

hi,o = [DRi does not. alter this.conclﬁsioﬁ.)
Although this numerical example did not produce an amplitude-

sensitive inétgbility, there are parameter regions whefé such an insta-

bility will be found. The cﬁnclusions,reached above afe consistent with

physical iﬁ;qition, in that the changes in frequency and the character

of the supgrcfitical 1imit.cyc1e are what would be expected in the absence

of amplitudé-sensitive instability,
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VII. CONCLUDING REMARKS

It hae'been shown theoretically that, under proﬁer'conditions, non-
lineax aerodynamlc loading can produce unstable panel motion in a param-
eter region that would be a stable one on the basis of a model with lln-
ear aerodynamlcs. The prinC1pal factors in determining the likelihood
of such an inetability are the excitation level that the‘ﬁanel is ex-
pected to'eﬁcdunter and the importance of the nonlineef-aerodynamicr
loading in comparison with the stabilizing effect of in-plane stretching
in the paﬁel.u Thellatter factor is measured directly‘by‘ehe interaction
parameter Mh/a()2 . For a given initial excitation, the critical
value of 'll'varies quite smoothly with this parameter;: On the other
hand, the dependence of the instability on the nature of the initial
conditions is quite complicated. This particular conclusion should not
be too sufprieing, since the system itself is far from simple.

To the;bést of the author's knowledge, amplitude*éensitive flutter
has not beEn'observed experimentally, at least for flat or slightly
curved panglsﬁ Behavior of this sort is consistent with that noted 'in
the experiments of Ref, 1. However, attempts to reprdduce this-behaviqr‘
theoretically;.with system parameters based on the experiments, were not
successful, 7' _

Since_ﬁhe type of panel considered here islfar from a realistic'one,
no firm conclusions can be drawn regarding the practical impact of non-
linear hypebenic loading. However, it is clear that any assessment of
this effect should include an accurate determination ef the true in-plane
restraint condltlon. A flat panel of finite span, which is also stabilized
by stretchlng in the spanwise direction, should be less susceptible to non-=
linear hypersonlc effects in comparison with its two-dlmensional counter-
part. The introduction of curvature, particularly as far as shells are
concerned; presents a different situation. It has been found (Ref. 16)
that a nonlinear structural shell model, with linear aerodynamic loading,

exhibits a "softenlng" nonlinear behavior of the same type as is produced
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by nonlinear aerodynamic loading for the flat panels studied in this
paper. The introduction of nonlinear aerodynamic loading into a shell
analysis could very well reinforce significantly this behavior. Finally,
there is the questlon of viscous aerodynamic effects, Within a linear
framework, viscous effects on panel flutter are generally thought to be
most 1mportant for Mach numbers near unity (Ref. 17). It is simply not
known if thls situation will change when nonlinear aerodynamlc loading
is significant,

A new pefturbation method for nonlinear oscillations has been ap-
plied to a two-mode model of a panel with hypersonic aerodynamlc loading.
This method is capable of generating recursively approximations to the
asymptotic behavior of the panel. The differential equations produced
are simple .enough to be integrated analytically, although the algebra
involved is quite complicated, Fortunately, there is enough organiza-
tion to the algebra that it can be performed relatively easily by com-
puters. Once this software is set up, parameter surveys can readily be
performed; and.the variation of the panel stability characteristic with
system parameters is displayed with enhanced clarity in comparxison with
the informatipn obtained from direct integration. Alfhough the analyti-
cal results are capable of demonstrating the amplitude-sensitive insta-
bility, the one numerical example that was attempted indicated that for
the paramétérs chosen this instability would not occur. A final Judgment
concerning the utility and accuracy of the perturbation method must await
detailed comparlsons between the new method's predlctlons and those ob-

tained from dlrect integration,
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Figure 1. Two-dimensional panel (plate-column) on hinged supports,
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Figure 2. Dimensionless panel disgplacement at x = 0.75a vs. ‘dimen-

sionless time T; A = 400, % = 0.0, @ =1.0, N =6,

al(O) = 0.1, linear aerodynamic terms.
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Figure 3. Continuation, response of panel of Fig. 2.
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Dimengioniess penel displacement at x

0.75a vs. dimen-

sionless time <t for zero system damping; A = 400,

m
M

namic terms.

= =00, o=1.0, N =6, al(O) = 0,1, linear aecrody-
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Figure 5.

Continuation, response of panel of Fig. k4.
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Figure 6. Dimensionless panel displacement at x = 0.75a vs. dimen-

sionless time T for zero system damping; A = 400,
%: 0.0, @=1.0, N=6, a(0)=-ay0)=0.01, linear

aerodynamic terms.
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VAT

Dimensionless panel digplacement at x = 0.75a vs. dimen-

sionless time T for zero system damping; A = 346.1,

M
serodynamic terms.

¥ .0.0, @=1.0, N=2, a,(0) = - &,(0) = 0.363, linear
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Figure 8. Dimensionless panel displacement at x = 0.75a vs. dimen-
sionless time T for zero system damping and subcritical
A3 A = 330, % = 0.0, =10, N=6, &/(0)=-a,0)
= 0.1, linear aserodynamic terms.
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Response of panel of Fig. 8 with different initial condi-

tions — al(O) = -5.(0) =0.5.
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Figure 10.

Dimensionless panel digplacement at x = 0.75a vs. dimen-
sionless time t; A = 330, 'ntflx = 0,01, &= 0.0, N =6,
% = 0.05, al(O) = - aa(O) = 1'7%% %inea:r aerodynamic
ternms plus term proportiomal to (&) from (Fz)k'
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Figure 11.

Response of panel of Fig. 10 with slightly greater initial
conditions = al(O) = - ae(O) = 1.72.
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Figure 12.

Maximom absolute value of dimensionless panel displacement'
w at x/a = 0.75 versus dimensionless dynamic pressure 2;

N =6, R, - 0, =1, /M = 0,01, A& = 0, Mh/a = 0,05,
Nonlinear aerodynamic loading

gade up of piston-theory
terms proportional to (&w/ox)“~ and (OF/dx)(FHi/d3t).
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Figure 13.

Maximum absolute value of dimensionless panel displacement

w at x/fa = 0,75 versus in-plane restraint parameter « ,
for A = 550, Other parameters and curve legend same as
in Fig. 12.
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Figure 14, Dimensionless stress ¢ at =z = +h/2 wversus chord distance
x/a, for o = 0.1, A =x550, and other parameters as listed

for Fig. 12. Stress distributions correspond to peak -displace-
ments plotted in Fig. 13, with that due to nonlinear aerodynamic
loading calculated for negative (into-cavity) peak.
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Figure 15.

Linear stability boundary for a panel (plate-column) on
hinged supports. Ordinate is dimensionless dynamic pressure,
abscissa is dimensionless in-plane applied load (negative
when panel is in compression). (After Ref, 11.)
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Figure 16,

Dimensionless panel displacement w at x/a = 0.75, versus
dimensionless time 7T, for point A in Fig, 15 after
increased from point B; N = 6, A = 260, o= 0,1, u/M= 0,01,
4p = 0, Mh/a = 0.05, nonlinear aerodynamic loading given by
piston-theory terms proportional to (3w/3x)% and (3%/ )
(Fi/dt).
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Rx/'rr2

2



19

500
UNSTABLE A
‘ -~
| ' - 400 —><
~ ——LINEAR | | R e
— NONLINEAR _-T
| - 300
|
,/
— = 200
= STABLE
—-"'""*‘;w.\ 100
BUCKLED N |

-3 -2 -1 50
| R X/ T
Figure 18. Comparison of linear and nonlinear stability boundaries. N =6, u/M = 0, 01, Mh/a =0, 05,

a=0.1, Ap=0, E = 1g50 with ay(0) = -a,(0) #0, nonlinear aerodynamic terms
proportional to (6W/0x)” and (@W/0x)(FF/ot). :
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Figure 19, Variatioﬁ of critical value of A with initial energy and modal content for R, = 0; other
parameters same as in Fig, 18,
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Figure 20. Variation of critical value of A with dimensionless static
_ pressure difference for fixed initial cond_itions. Rx =0
~-  other parameters same as in Fig. 18,
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Figure 21, Variation of critical value of A with nonlinear interaction
:parameter for Eo = 1750, other parameters same as in
. Fig.. 18. :
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